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Abstract 

Synchronous oscillations evoked by large stimuli have been observed in a variety of 

vertebrate retinas yet their visual function remains unresolved.  Here, we show that 

coherent oscillations in the spike trains of neighboring retinal ganglion cells encode 

global topological properties, such as size, that cannot be deduced locally from their 

mean spike counts or time-averaged firing rates.  We analyzed the single-trial responses 

of cat ganglion cells to spots of various sizes and found that the mean spectral amplitude 

between 65-100 Hz, computed from multi-unit spike trains 50-300 msec in duration, 

supports good discrimination (approximately 75%) between large and small spots.  These 

results demonstrate that size information can be extracted from synchronous oscillations 

on single-trials and short time scales.  To examine whether the information content of 

retinal oscillations depends critically on how such oscillations are generated, as well as to 

explore an expanded range of stimulus sizes and topologies, we constructed two 

mathematical models whose trial-averaged correlations matched those observed 

experimentally: 1) a temporally-modulated Poisson process whose mean rate was held 

constant regardless of stimulus size and 2) an integrate-and-fire feedback circuit based on 

retinal anatomy.  In both models, synchronous oscillations mediated single-trial size-

discrimination comparable to that measured experimentally.  Finally, as retinal 

oscillations are both size-dependent and stimulus-specific, we expected there to be a 

sharp transition in the gamma-band activity evoked by random binary images as the pixel 

density exceeds a critical percolation threshold at which large connected clusters first 

appear, a novel experimental prediction supported by the retinal model. 
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Introduction 

 High frequency oscillations have been observed in a wide variety of vertebrate 

retinas, including cat (Laufer and Verzeano, 1967; Neuenschwander et al., 1999; 

Neuenschwander and Singer, 1996; Steinberg, 1966), rabbit (Ariel et al., 1983), 

mudpuppy (Wachtmeister and Dowling, 1978), frog (Ishikane et al., 1999), macaque 

(Frishman et al., 2000) and human (De Carli et al., 2001; Wachtmeister, 1998).  

Nonetheless, the role of synchronous oscillations in normal visual processing is not fully 

understood.  Here, we used experimental and model spike trains to investigate whether 

coherent oscillations among neighboring retinal ganglion cells encode global stimulus 

properties not locally available in their mean spike counts or time-averaged firing rates.  

Ganglion cell firing rates often depend both on local contrast and on stimulus size, 

increasing for spot diameters smaller than the receptive field center and decreasing 

thereafter due to surround inhibition.  Because it is impossible to disentangle the effects 

of global stimulus topology from the effects of local contrast, the size of a stimulus 

cannot be uniquely determined from the mean firing rates of one or a few neighboring 

cells.  High frequency oscillations, on the other hand, are not evoked by small spots 

(Ariel et al., 1983; Ishikane et al., 1999; Neuenschwander et al., 1999) and thus are not 

intrinsically confounded by local contrast.  Moreover, unlike information encoded by 

temporal synchrony, which is susceptible to contamination from chance coincidence and 

therefore potentially unreliable when the firing rate is high (Shadlen and Movshon, 

1999), oscillatory activity can be modulated independently of the mean firing rate.   

 We hypothesize that whereas the average firing rate in a small group of 

neighboring ganglion cells conveys information about local stimulus properties, such as 
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contrast, synchronous oscillations convey additional information about global stimulus 

properties, such as size.  To test this hypothesis, we asked whether global topological 

information could be extracted from the coherent oscillations among neighboring retinal 

ganglion cells upon single stimulus presentations lasting no more than a few hundred 

msec, equivalent to typical inter-saccade intervals (Martinez-Conde et al., 2004).  The 

answer to this question both constrains and informs the functional role of retinal 

oscillations.  In order to be behaviorally relevant, any information conveyed by 

synchronous oscillations must be accessible on physiological time scales.  Furthermore, 

spatial convergence at early visual processing stages is rather low, being one to a few at 

retina-LGN synapses (Usrey et al., 1999) and approximately one to 15 at LGN synapses 

onto layer IV simple cells if ON and OFF inputs are considered separately (Alonso et al., 

2001).  The low convergence onto individual target neurons at early visual processing 

stages requires that any information encoded by synchronous oscillations must be 

obtainable from a relatively small number of cells.  Conversely, if size-dependent 

oscillations cannot be extracted from a relatively small number of ganglion cells on 

single stimulus trials, then it is unlikely that such oscillations could be functionally 

relevant at early processing stages.   

 To investigate whether global stimulus properties could be extracted from the 

synchronous oscillations between a relatively small number of retinal ganglion cells on 

single-trials, we re-analyses multi-unit spike trains from the cat retina recording in 

response to spots of different sizes.  A discrimination analysis was used to classify the 

relative sizes of spot stimuli as either “smaller” or “larger” on the basis of oscillations 

present in short sections of multi-unit spike train data, from 50 to 300 msec in duration 
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and containing on the order of 4 to 5 ganglion cells located at the center of the stimulus.  

Frequency spectra were computed from the individual epochs of multi-unit data and the 

average spectral amplitude in the upper gamma-band, between 65 and 100 Hz, was 

measured relative to baseline after normalizing by the total number of spikes.  Despite the 

presence of substantial single-trial variability, it was possible to discriminate between 

large and small stimuli with performance levels of approximately 75%.   

 An additional question we sought to address was whether the single trial 

discrimination mediated by experimentally recorded spike trains resulted from highly 

specialized processing or was instead a general property of coherent oscillations that 

would likely be present regardless of the underlying generating mechanism.  Simply 

because two processes exhibit similar multi-trial correlations does not require that their 

single-trial statistics will likewise be identical.  We therefore analyzed an equivalent 

single-trial discrimination task using two very different models for generating 

synchronous oscillations.   

 Model I: Rate-Modulated Poisson Process (Poisson).  Temporal correlations 

between the separate elements contributing to the multi-unit spike train were generated 

by a common oscillatory modulation of their instantaneous firing probabilities although 

the elements themselves did not interact.  The average number of spikes produced by the 

Poisson model was held constant across stimulus conditions to ensure that no size 

information was conveyed by the mean firing rate.   

 5



Stephens et. al MS NC2868 

 Model II: Retinal Feedback Circuit (Network).  Coherent oscillations were 

generated by feedback interactions between ganglion cells and amacrine cells in a manner 

consistent with retinal anatomy and physiology (Kenyon et al., 2003).   

 Both models were calibrated to produce size-dependent synchronous oscillations 

that were similar to those measured experimentally, as assessed by trial-averaged multi-

unit cross- and auto-correlation histograms as well as by multi-unit frequency spectra.  

Despite the very different mechanisms used to generate synchronous oscillations in the 

two sets of artificial spike trains, both models mediated good single-trial size 

discrimination consistent with that inferred from the experimental data.   

 Artificially generated spike trains were also used to investigate the amount of 

potentially useful size information conveyed by synchronous oscillations among varying 

numbers of neurons, from 1 to 16, and to explore the range of stimulus sizes that could be 

discriminated based on gamma-band activity alone.  By employing two separate models 

based on very different mechanisms for generating synchronous oscillations, we were 

able to draw stronger inferences than would be possible with only a single model.  Lastly, 

the network model was used to examine oscillatory activity across the entire retina in 

response to a set of random binary images.  Each image was characterized by an average 

pixel density, or probability that any given pixel was on.  Consistent with the encoding of 

contiguous size by retinal oscillations, there was a sharp transition in the total gamma-

band activity near the image percolation threshold at which large connected clusters first 

appear.  The observation of a sharp transition in the total gamma-band activity near the 

percolation threshold represents a novel experimental prediction.   
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Methods 

Physiological Recordings:  

Data from previously reported experiments in the cat retina were reanalyzed in 

order to quantify the information relating to the global stimulus topology conveyed by 

high frequency oscillations in short sections of multi-unit spike train data.  As no new 

experiments were conducted, and since a detailed description of the experimental 

methods is available elsewhere (Neuenschwander et al., 1999), only an abbreviated 

description of the experimental procedure is provided here.   

Intra-ocular recordings were made from anesthetized and paralyzed cats in 

response to spots of various sizes, presented at high contrast against a background 

illumination of ~0.4 cd-m-2.  Each spot of a given size was presented 20 times for a 

period of three seconds.  For each spot size, the total spike record across all trials was 

divided into 200 equally spaced, non-overlapping segments, from 50-300 msec in length.  

For purposes of this study, these 200 spike train segments were treated as independent 

stimulus trials.   

 

Model I: Rate-Modulated Poisson Process (Poisson):   

Artificial spike trains were generated under the assumption that the 

spatiotemporal correlations between cat ganglion cells are due to a common oscillatory 

input that uniformly modulates the firing rates of all simultaneously recorded neurons.  

An oscillatory time series of a duration, T, and temporal resolution, ∆t, could be 

constructed by first defining the discrete frequencies, fk:  

 
t

Tk
T
kfk ∆

<≤= 0,  (1) 
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in terms of which the discrete Fourier coefficients were defined as follows: 
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where f0 is the central oscillation frequency, σ is the width of the spectral peak in the 

associated power spectrum, rk is a uniform random deviate between 0 and 1 that 

randomized the phases of the individual Fourier components (generated by the Matlab® 

intrinsic function RAND) and C is an overall scale factor.  The coefficients, Ck, were 

used to convert back to the time domain using the discrete inverse Fourier transform: 
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where the real part of Rn denotes the value of the time-dependent firing rate at the discrete 

times, tn=n ∆t, N = T ∆t, A is an empirically determined scale factor and we have added a 

constant offset, R0, which sets the mean firing rate, equal to 50 Hz.  The quantity A, with 

units of Hz, was determined by the formula: A = R0 (0.16 + 0.14L), where L represents 

the linear stimulus size, or length, along one axis, with values ranging from 1 to 16, and 

the other coefficients were determined empirically to produce a reasonable match to the 

experimental data.  Stimulus sizes denoted “small”, “med” and “large” in the text 

corresponded to L values of 1, 4 and 6, respectively.  The quantity C in eq. 2 was 

determined by setting the standard deviation of Rn over all time steps to unity when 

A = 1.  The width of the frequency spectrum, σ, also in units of Hz, was given by an 

analogous formula: σ = 9.4 – 0.6L.  Negative values of Rn were truncated at zero and the 

resulting time series rescaled so that its average value remained equal to R0.   

 The time series defined by Rn was used to generate oscillatory spike trains via a 

pseudo-random process: 
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 ( )rtRS nn −∆= θ  (4) 

where Rn ∆t is the probability of a spike in the nth time bin, θ is a step function, 

θ (x<0) = 0, θ (x≥0) = 1, and r is again a uniform random deviate.  In the limit that 

Rn ∆t << 1, the above procedure reduces to a rate-modulated Poisson process.  The same 

time series, Rn, was used to modulate the firing rate of each element contributing to the 

artificially generated multi-unit spike train, thus producing temporal correlations due to 

co-varying input. 

 

Model II: Integrate-and-Fire Feedback Circuit (Network):   

A second and very different method for generating artificial spike trains used a 

semi-realistic model of the inner retina (Kenyon et al., 2003).  Input to the model was 

conveyed by an array of external currents proportional to the pixel-by-pixel grayscale 

value of a two-dimensional image.  These external currents directly stimulated the model 

bipolar cells and approximated their light-modulated synaptic input from cone 

photoreceptors.  The bipolar cells produced excitatory postsynaptic potentials in both 

ganglion cells and amacrine cells according to a random process (Freed, 2000).  The 

axon-bearing amacrine cells were electrically coupled to neighboring ganglion cells and 

to each other, and made strong inhibitory connections onto the surrounding ganglion cells 

and axon-bearing amacrine cells (fig. 1).  This feedback circuit produced robust, 

physiologically realistic oscillations in response to large stimuli.  When several ganglion 

cells were activated by a stimulus, they in turn activated neighboring axon-bearing 

amacrine cells via gap junctions (Dacey and Brace, 1992; Jacoby et al., 1996; Vaney, 

1994).  The stimulated cells were then hyperpolarized by the ensuing wave of axon-
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mediated inhibition, thus setting up the next cycle of the oscillation.  Spike generation 

was modeled as a leaky integrate-and-fire process with a membrane time constant of 

5 msec, consistent with published physiological data from cat alpha ganglion cells 

(O'Brien et al., 2002).  The model also contained local non-spiking amacrine cells that 

generated randomly distributed inhibitory postsynaptic potentials that helped make 

spontaneous firing asynchronous, but were not otherwise critical for generating 

oscillatory spike trains.  Mathematical details of the model are presented in the appendix.  

A thorough analysis of the behavior of the model, its robustness with respect to both 

numerical and physiological parameters and its connection to experimental data, is 

presented elsewhere (Kenyon et al., 2003). 

Figure 1 about here 

Correlation Analysis 

 Using multi-unit spike trains recorded from the cat retina, multi-unit auto-

correlograms were computed for each segment, 200 msec in duration, and the individual 

correlation functions normalized as a fraction of the expected synchrony due to chance, 

defined as the mean correlation amplitude for delays between 75-100 msec.  A 

correlation amplitude of one thus corresponded to a doubling in the number of correlated 

events over the expected rate during that segment.  By measuring correlations relative to 

the baseline present during the same trial, it was possible to compensate, in part, for 

changes in firing activity during the 3 second stimulus presentation.  All correlations 

were lag corrected for edge effects arising from the finite length of the spike train.  The 

single-trial auto-correlograms were averaged to produce a final correlation measure.   

 A similar analysis was used to measure correlations in artificially 

generated spike train segments, also 200 msec in duration.  However, for the artificially 
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generated segments, correlations were computed separately between all distinct cell pairs 

contributing to the multi-unit record and the individual cross-correlations then averaged 

to produce a multi-unit cross-correlogram that, unlike the multi-unit auto-correlograms 

computed from the experimental data, remained finite at zero delay.  The multi-unit 

cross-correlograms measured on each stimulus trial were normalized relative to the 

expected correlations due to chance and averaged across all stimulus trials.  All multi-

trial correlation measures used a bin width of 1 msec.  Shift-predictors were not 

subtracted, as our hypothesis does not depend on whether oscillations are phase-locked to 

the stimulus onset. 

 

Size Discrimination 

 We assessed the ability to discriminate between small and large stimuli 

based on the average spectral amplitude in the upper gamma frequency band (65-100 Hz) 

as extracted from short segments of multi-unit spike train data on single trials.  For multi-

unit spike trains recorded from the cat retina, individual segments were 50-300 msec in 

duration and contained approximately 4-5 neurons, the exact number being unknown.  

Artificially generated spike train segments were 50-400 msec in duration and contained 

from 1-16 neurons, as indicated.  For spike trains generated by the integrate-and-fire 

retinal model, segments were always extracted from separate stimulus presentations 

during the plateau portion of the response, beginning 200 msec after stimulus onset.  To 

estimate the average spectral amplitude in the upper gamma band, the multi-unit spike 

train was Fourier transformed and the mean amplitude of the discrete Fourier coefficients 

between 65 and 100 Hz was computed.  The individual Fourier coefficients were 

normalized by the total power in the zero-frequency band, thus removing any direct 

dependence on the mean firing rate.  The average spectral amplitude in the upper gamma 

band was expressed as a fraction of the mean baseline spectral amplitude, defined here as 
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the average between 220 and 500 Hz, computed on the same trial.  This normalization 

was not essential for the artificially generated spike trains but was necessary to 

compensate for the changing baseline of the experimentally recorded data.  The average 

spectral amplitude in the upper gamma band (gamma-band activity) was determined for 

each trial and the results sorted into 11 equally spaced bins spanning the full range of the 

data.  The binned, single-trial gamma-band activity was then normalized as a probability 

distribution, yielding the fraction of trials on which the single-trial gamma-band activity 

fell within a particular range.   

 Given the probability distributions of single-trial gamma-band activity for 

each stimulus size, it was straightforward to estimate the percentage of trials on which 

any given pair of stimulus sizes could be discriminated based on the single-trial gamma-

band activity alone.  Specifically, the ability to discriminate two stimulus sizes was 

inversely related to the degree of overlap between the corresponding probability 

distributions (Duda et al., 2001).  If the distributions of single-trial gamma-band activity 

overlapped completely, the maximal theoretical performance on the size discrimination 

task would be no better than chance (50% correct).  On the other hand, if the distributions 

of single-trial gamma-band activity were entirely non-overlapping for a given pair of 

stimulus sizes, the maximum theoretical performance on the discrimination task would be 

perfect (100% correct).  Between these two extremes, corresponding to distributions that 

partially overlap, maximum theoretical performance on the size discrimination task, P, 

expressed as a fraction of trials correctly classified, is given by the following formula: 

 
 ( ) 22 overlapAP −=  (5) 

where Aoverlap denotes the total area of the overlap between the two distributions and the 

maximum value of Aoverlap is normalized to one.  Error bars on the estimated values of P 
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were determined by assuming the number of trials to either side of the Bayes 

discriminator obeyed binomial statistics. 
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Results 

 As reported previously (Neuenschwander et al., 1999), multi-unit auto-

correlograms recorded from the cat retina, computed from multi-unit spike trains 

containing approximately 4-5 ganglion cells, exhibit synchronous high frequency 

oscillations whose amplitude increases markedly with stimulus size (fig. 2a).  A small 

square spot, 0.7°×0.7°, produced negligible oscillations, whereas a large square spot, 

9.8°×9.8°, evoked strong oscillations at approximately 80 Hz.  An intermediate sized 

spot, 6.3°×6.3°, produced periodic correlations at similar frequencies to those elicited by 

the larger spot but of smaller amplitude and duration, indicating that over this range of 

spot dimensions oscillatory responses depend smoothly on stimulus size.  Periodic 

modulations in the multi-unit auto-correlogram declined with increasing delay, indicating 

that the oscillation phase drifts randomly over time.  The multi-unit auto-correlogram is 

undefined at zero delay and was set arbitrarily to zero.   

Figure 2 about here 

 Multi-unit cross-correlograms computed from artificial spike trains produced by 

either by a rate-modulated Poisson process (model I, Poisson, fig. 2b) or by a semi-

realistic retinal feedback circuit (model II, Network, fig. 2c) exhibited oscillations whose 

size dependence, amplitude, duration and frequency were similar to those measured 

experimentally.  For the rate-modulated Poisson process, the amplitude and width of the 

spectral peak were adjusted to produce a good qualitative fit to the physiological data for 

each spot size, labeled “small”, “med” and “large”.  For the integrate-and-fire feedback 

circuit, we used square spots covering either 1×1, 4×4, or 6×6 ganglion cells (stimulus 
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intensity = 0.25).  Poisson distributed events were added to the spike trains generated by 

the network model so as to increase the mean firing rate by 20% regardless of stimulus 

size.  This procedure yielded correlations that better matched the experimental data, 

possibly because multi-unit spike trains recorded from the cat retina may have contained 

some non-oscillatory background spikes.  Both of the artificially generated event trains 

consisted of 4 units, which in the case of the retinal model were taken from a 2×2 array of 

neighboring ganglion cells located at the center of the stimulus.   

 To quantify the dependence of oscillatory responses on stimulus size, we Fourier 

analyzed 200 msec epochs of both natural and artificial multi-unit spike trains, using the 

same data as for the correlation analysis above.  The magnitudes of the Fourier 

coefficients computed from individual spike train segments were normalized by the total 

number of events, given by the Fourier coefficient at 0 Hz, and the results from all 200 

stimulus trials averaged together (fig. 3).  In all three sets of data, a prominent peak in the 

upper gamma frequency band, defined here as between 65-100 Hz, became evident as the 

size of the stimulus increased.  The frequency spectra associated with the rate-modulated 

Poisson process (model I) were somewhat broader than those computed from either the 

experimental data or from the retinal network (model II), even though the multi-unit 

correlograms derived from all three sources were very similar (fig. 2).  Differences 

between the frequency spectra produced by the two models suggest that the retinal 

network (model II) better describes for the physiological mechanisms underlying 

synchronous oscillations. 

Figure 3 about here 
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 The measures of oscillatory responses among retinal ganglion cells presented 

above, either multi-unit correlograms or frequency spectra, represent averages over 

multiple trials.  On behavioral time scales, however, such multi-trial measures are not 

available to the animal's nervous system.  For retinal oscillations to convey behaviorally 

relevant information, they must be detectable on single trials lasting from 10s to 100s of 

msecs.  For both the experimental and artificially generated spike trains, we examined the 

normalized frequency spectra computed from single stimulus trials, 200 msec in duration, 

in response to three different spot sizes (fig. 4).  As in the multi-trial averages, spectral 

amplitudes between 65-100 Hz measured from single-trial data increased systematically 

as a function of spot size.  In the cat data, the single-trial frequency spectra were 

substantially noisier in response to the smallest spot size (0.7°×0.7°), presumably because 

the receptive field centers were not completely covered, thereby reducing the overall 

number of spikes compared to the larger spot sizes. 

Figure 4 about here 

 To investigate the size information encoded by retinal oscillations on behavioral 

time scales, we constructed probability distributions of the gamma-band activity present 

on single-stimulus trials (fig. 5).  The gamma-band activity was defined as the average 

spectral amplitude between 65-100 Hz, normalized by the DC component and expressed 

as a fraction of the average spectral amplitude between 220-500 Hz present during the 

same 200 msec epoch.  The analysis was repeated for all 200 trials and the results sorted 

into 11 uniform bins spanning the full range of the data.  For both natural and artificial 

spike trains, the distributions for the smallest (solid lines) and largest (dotted lines) spot 

sizes were reasonably distinct, implying that gamma-band activity from a small group of 
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neighboring ganglion cells can mediate good single-trial size discrimination.  For the cat 

spike trains, the distribution of gamma-band activity evoked by the smallest spot size was 

shifted somewhat to the right compared to the corresponding distributions from the two 

models, reflecting the higher level of noise present in the single-trial spectra computed 

from the experimental data (fig. 4a).  Discrimination between small and large spots is 

thus expected to be slightly worse for the experimental vs. model spike trains. 

Figure 5 about here 

 To quantify the degree of discrimination theoretically possible on single stimulus 

trials, we employed a Bayes discriminator (Duda et al., 2001).  For any pair of spot sizes, 

the Bayes discriminator is defined as the value of the gamma-band activity at which the 

two distributions cross (this definition does not apply if the distributions have multiple 

intercepts).  If the single-trial gamma-band activity falls to the left of the Bayes 

discriminator, the stimulus is classified as the smaller of the two spot sizes, whereas the 

stimulus is classified as the larger of the two if the gamma-band activity falls to the right 

of the discriminator.  The overlap between the two distributions estimates the number of 

trials that, on average, will be classified incorrectly.  Using the probability distributions 

described above, we found that 200 msec segments of multi-unit spike trains from the cat 

retina permit discrimination between large and small spots on approximately 75% of the 

trials (fig. 6).  Thus, the gamma-band activity from a small number of neighboring 

ganglion cells conveyed enough information on behaviorally relevant time scales to 

determine whether the recorded neurons were responding to the “smaller” or to the 

“larger” stimulus.  The artificially generated spike trains yielded slightly better 

performance on the size discrimination task, exceeding 80% correct for both models 
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when deciding between the large and small spots.  The spike trains from model I, 

corresponding to a rate-modulated Poisson process, all had the same mean firing rate 

regardless of stimulus size, demonstrating that differences in the total number of spikes 

were not essential for the size discrimination task.   

Figure 6 about here 

 It is uncertain why the spike trains generated artificially yielded better 

performance then those recorded experimentally.  One explanation is that the 

experimentally recorded spike trains may have included ganglion cells of different types 

and opposite ON/OFF response polarities whereas the computer generated spike trains 

were derived from a homogeneous population.  The changing baseline of the 

experimentally recorded spikes trains may also have confounded the discrimination 

analysis, despite efforts to correct for non-stationary effects (see methods).  Thus, the 

performance levels obtained with the experimentally recorded data likely reflect a lower 

bound on the maximum performance levels theoretically attainable.  

 We next examined how the information about the stimulus size encoded by retinal 

oscillations depends both on the duration of, and number of neurons contributing to, the 

multi-unit spike record.  Performance on the size discrimination task, as measured by the 

percentage of correctly classified trials in which either the small or the large spot was 

presented with equal probability, was plotted as a function of the analysis window size.  

For the artificially generated spike trains, the analysis used either 1×1, 2×2, 3×3, or 4×4 

neurons, corresponding to 1, 4, 9, or 16 total cells, respectively (fig. 7).  For 

simultaneously recorded cat ganglion cells, performance ranged from approximately 

70-75% as the analysis window size increased from 50 to 300 msec.  Both theoretical 
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models suggested that the information content of simultaneously recorded spike trains 

depends strongly on the number of cells included in the multi-unit record.  Even for 

analysis windows as short as 50 msec, performance levels of up to 85% could be 

achieved by including a sufficient number of cells.  The ability to extract topological 

information from 50 msec spike train segments was particularly evident for the rate-

modulated Poisson process, whereas artificial spike trains generated by the retinal model 

conveyed substantially less size information on short time scales.  This discrepancy may 

be related to the synchronization of neighboring ganglion cells in the network model due 

to extensive gap junction coupling via amacrine cells (Kenyon et al., 2003), since such 

synchronization effectively reduces the improvement in signal to noise obtained by 

pooling over multiple neurons (Shadlen and Newsome, 1998).  In both models, 

performance levels at or near 80% could be achieved with as few as nine units in 

approximately 100 msec, a result consistent with the low convergence at early visual 

processing stages.   

Figure 7 about here 

 So far, we have focused on relatively coarse discriminations between large and 

small spots.  Artificially generated spike trains were used to study whether synchronous 

oscillations could, in principle, support finer discriminations over a wider range of spot 

sizes (fig. 8).  For model I, spot sizes with L-values ranging from1 to 16 (see methods) 

were compared pairwise, while for model II, spot sizes ranged from 1×1 to 16×16 

ganglion cells.  The size of the smaller spot in each pair is given by the intercept of each 

curve with the x-axis, whereas the size of the larger spot is given by the x-coordinate of 

each point.  Moving left to right along each curve, the size of the smaller spot is held 
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constant while the size of the larger spot increases.  The analysis window for all pairwise 

size discriminations was 200 msec.  Both models suggest that the size information 

encoded by synchronous oscillations, at least on behaviorally relevant time scales, is 

rather coarse, allowing discrimination only between small and larger spots.  This coarse 

encoding was evident whether the multi-unit spike trains used in the discrimination 

analysis contained 4 cells (left column) or 9 cells (right column).  Only poor 

discrimination (<75%) was possible between pairs of spots whose diameters both 

exceeded approximately 4-6 Poisson units or ganglion cells.  Discrimination between 

large spots was slightly better in the Poisson model, for which the spectral amplitude and 

width depended linearly on spot size (see methods), whereas non-linear saturation effects 

were more significant in the network model.  Even in the Poisson model, however, the 

firing probability could not drop below zero, which introduced a form of non-linear 

saturation.  Such non-linear effects likely accounted for the decline in the performance 

mediated by both models as the second spot became very large.  While these results must 

await experimental confirmation, they nonetheless suggest that the size information 

conveyed by synchronous oscillations is rather coarse, permitting discrimination only 

between small and large spots. 

Figure 8 about here 

 The fact that retinal oscillations increase strongly with stimulus size suggests the 

total gamma-band activity, averaged across the entire retina, will exhibit a sharp 

dependence on the average pixel density.  At low pixel densities, the total gamma-band 

activity should be negligible, as the image consists of only a few small, isolated spots.  At 

very high pixel densities, the total gamma-band activity should be large, as an 
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appreciable fraction of the image will consist of a single contiguous spot.  Interestingly, 

we expect that the total gamma-band activity will not depend smoothly on the average 

pixel density, but rather will exhibit a sharp transition, jumping discontinuously from 

small to large values, at a critical pixel density corresponding to a percolation transition.   

 To provide an intuitive feeling for a percolation transition, imagine a random 

binary image as a shallow, rock-strewn pond where the black pixels represent water and 

the white pixels represent rocks.  Assuming that the rocks are distributed randomly, 

where p denotes the average density, we want to know whether it is possible, for a given 

value of p, to walk from one side of the pond to the other without getting wet.  For small 

p, there will be only a few isolated rocks and an entirely dry passage is clearly 

impossible.  As p increases, more and more rocks appear, forming small, isolated islands 

or clusters.  Remarkably, at a very specific value of p, called the percolation threshold, 

the individual clusters tend to be joined together such that it suddenly becomes possible 

to walk all the way across the lake.  The abrupt appearance of large connected clusters is 

the hallmark of a percolation transition, originally studied as a model of flow through 

porous media and which has a long history in statistical physics (e.g. Grimmett, 1999). 

 We used the retinal network model to investigate whether the total gamma-band 

activity, averaged across the entire image, exhibits a sharp transition around the 

percolation threshold.  Random binary images were constructed by independently turning 

each pixel white, against a black background, with a probability p between zero and one 

(fig 9a).  Above the percolation threshold, p>pc, pc ≈ 0.6, there exists connected clusters 

that span the entire image.  We computed trial-averaged power spectra from massed spike 

trains consisting of all 128×128 ganglion cells in the model (the size of the model was 
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increased for these experiments to reduce finite-size effects).  As expected, there was a 

sharp increase in mean spectral amplitudes within the upper gamma-band as the pixel 

density crossed the percolation threshold, implying that synchronized retinal oscillations 

encode the presence of large features regardless of shape (fig. 9b).  Both the average 

gamma-band activity (fig. 9c, solid line) and the average cluster size (see for example 

Hoshen and Kopelman, 1976) (fig. 9c, dotted dark gray line) exhibited sharp transitions 

around the percolation threshold, whereas the average luminance was simply proportional 

to the mean pixel density (fig. 9c, dashed light gray line).  Retinal processing is thus 

predicted to convert a phase transition in the spatial properties of the input image into a 

transition in the temporal patterning of the output spike trains.   

Figure 9 about here 

 A sharp increase in gamma-band activity was still evident near the percolation 

threshold even when the mean luminance was kept constant by reducing the intensity of 

each pixel in proportion to the mean pixel density (not shown), although the transition in 

this case was smoother due to the strong dependence of retinal oscillations on stimulus 

contrast (Kenyon et al., 2003; Kenyon et al., accepted for publication; Neuenschwander 

et al., 1999).  The network model also lacked known physiological mechanisms for 

luminance adaptation that would likely have reduced the importance of the mean image 

intensity.  The transition in gamma-band activity was not as sharp as the transition in 

mean cluster size, presumably because lateral processing in the retina tends to lump 

together large, nearly connected clusters (Kenyon et al., in press).  For this reason, it was 

not necessary to consider different types of percolation (i.e. site or bond percolation) 

relating to the different ways connected clusters can be defined. 

 22



Stephens et. al MS NC2868 

 

 23



Stephens et. al MS NC2868 

Discussion 

 We have examined the role of synchronous oscillations between retinal ganglion 

cells in the encoding of visual information.  We find that high frequency oscillations in 

small groups of neighboring ganglion cells allow single-trial discrimination between 

large and small spots on biologically reasonable time scales.  Single trial discrimination 

with low spatial convergence is essential if synchronous oscillations between retinal 

neurons are to convey stimulus attributes that are to be extracted early in the visual 

processing hierarchy.  Similar single-trial discrimination was observed in two very 

different theoretical models whose multi-trial correlations were both consistent with 

experimental data, suggesting that the information conveyed by coherent oscillations is 

not strongly dependent on the underlying physiological mechanisms giving rise to the 

oscillations.  In particular, similar single trial discrimination was obtained regardless of 

whether temporal correlations were produced by periodically modulated common input 

or through the dynamics of synaptically mediated feedback loops. 

 Ganglion cell firing rates are strongly modulated by local stimulus properties, 

such as contrast.  The average firing rate among a small group of neighboring ganglion 

cells cannot therefore convey information about global stimulus properties without being 

confounded by local attributes.  High frequency oscillations, on the other hand, are not 

evoked by small spots, even at high contrast.  Thus, oscillations among a small group of 

neighboring ganglion cells can reliably signal that the stimulus to which they are 

responding is part of a large feature extending beyond their central receptive fields.  High 

frequency oscillations therefore allow global topological information to be encoded by 

local spiking activity.   
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 Encoding the presence of a large visual feature early in the visual system has 

potential behavioral advantages.  For many organisms large objects represent possible 

danger and early detection allows for an early evasive response.  It is possible, for 

instance, that high frequency oscillations between dimming detectors in the frog retina 

contribute to just such an early warning system (Ishikane et al., 1999).  Likewise, in 

weakly electric fish, synchronized oscillations allow discrimination between prey and 

communication signals (Doiron et al., 2003).  The question of how oscillatory 

information might be decoded by downstream networks is beyond the scope of the 

present study.  However, we may imagine that corresponding high frequency resonances, 

of cellular, synaptic and/or network origin might cause neural circuits in the LGN or 

primary visual cortex to respond preferentially to oscillatory input. 

 The role of correlations in the neural code is controversial.  Using an information 

theoretic analysis it has recently been argued that correlations between retinal ganglion 

cells encode relatively small amounts of additional information about natural visual 

scenes compared to their independent firing rates (Nirenberg et al., 2001).  These results 

are not inconsistent with our work as their analysis used a 10 msec time window that 

could not have resolved oscillations in the upper gamma band.  In addition, the role of 

synchrony as a possible binding mechanism has sparked intense debate (Shadlen and 

Movshon, 1999; Singer and Gray, 1995).  Our results suggest that oscillations may 

encode global stimulus information regardless of their possible contribution to feature 

binding.  Finally, it has been observed that any correlation between neural spike-trains is 

detrimental to rate-coded signals (Shadlen and Newsome, 1998).  Correlations, however, 

are ubiquitous throughout the brain and our results demonstrate that, at least in some 

 25



Stephens et. al MS NC2868 

cases, temporal correlations convey potentially useful information not present in the local 

mean firing rates.   

 It is possible to imagine additional physiological and behavioral experiments that 

might be conducted to further test the role of synchronous oscillations in the encoding of 

global topological properties.  Indeed, our prediction of a sharp transition in total gamma-

band activity as the pixel density crosses a percolation threshold suggests a novel and 

indirect method for examining the encoding role of synchronous oscillations.  

Presumably, local field potentials, or even clinical measures, such as the 

electroretinogram (ERG), could be used to assess gamma-band activity across large 

sections of the retina and there may be perceptual correlates of the predicted transition as 

well.   

 26



Stephens et. al MS NC2868 

Appendix 

Retinal Model 

 Artificial spike trains with realistic spatiotemporal correlations were generated by 

a retinal feedback circuit (fig 1), organized as a 32×32 array with wrap-around boundary 

conditions containing 5 distinct cell types: bipolar cells, small amacrine cells, large 

amacrine cells, axon-bearing amacrine cells, and ganglion cells.  All cell types were 

modeled as single compartment, RC circuit elements obeying a first order differential 

equation that can be written efficiently in terms of matrix multiplications: 
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where  is a 2-D array denoting the normalized membrane potentials of all cells of 

type k, ,  is the time constant,  is a bias current for setting the resting 

potential, 
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t
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is an external input intended to represent light stimulation,  gives the 

connection strengths between presynaptic {k΄} and postsynaptic {k} cell types as a 

function of their separation along one direction, defined here as ‘vertical’, 

),( kkW ′
t

TkkW ),( ′
t

 gives 

the same information as a function of separation along the perpendicular direction, 

defined here as ‘horizontal’, and the functions  give the associated input-output 

relations for the indicated pre- and post-synaptic cell types, detailed below.  All 

membrane potentials were subject to a lower cutoff, equal to –1.5.  The output of the 

axon-mediated inhibition was delayed by 2 msec, except for the axonal connections onto 

the axon-bearing amacrine cells, which was delayed for 1 msec.  All other synaptic 

interactions were delayed by 1 msec.  All equations were integrated in Matlab

),( kkf ′

® using a 

direct Euler method with an integration time step of 1 msec. 

The input-output function for gap junctions was given by the identity: 

 ( ) )()(),( kkkk VVf ′′′ =
tt

, (A2) 
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where the dependence on the presynaptic potential has been absorbed into the definition 

of .  This is possible because both the decay term in equation A1 and the omitted 

dependence on the presynaptic potential in equation A2 depend linearly on , 

allowing the coefficients to be combined.  The input-output function for graded synapses 

was constructed by comparing, on each time step, a random number with a Fermi-

function: 
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where α sets the gain (equal to 4 for all non-spiking synapses), r is a uniform random 

deviate equally likely to take any real value between 0 and 1, and θ is a step function, 

0,1)( ≥= xxθ ; 0,0)( <= xxθ .   

Lastly, the input-output relation used for conventional threshold synapses was: 

 ( ) ( ))()(),( kkkk VVf ′′′ =
tt

θ . (A4) 

A modified integrate-and-fire mechanism was used to model spike generation.  A 

positive pulse (amplitude = 10.0) was delivered to the cell on the time step after the 

membrane potential crossed threshold, followed by a negative pulse (amplitude = -10.0) 

on the subsequent time step.  This resulted in a 1 msec action potential that also produced 

impulse responses in electrically coupled cells, an important element of the circuit 

dynamics.  The bias current, b, was incremented by -0.5 following each spike, and then 

decayed back to the resting value with the time constant of the cell, adding to the relative 

refractory period.  There was in addition an absolute refractory period of 1 msec. 

Along both the horizontal and vertical directions, synaptic strengths fell off as 

Gaussian functions of the distance between the pre- and post-synaptic cells.  For a given 

horizontal separation, the horizontal weight factor was determined by a Gaussian function 

of the following form: 

 28



Stephens et. al MS NC2868 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−=′

2

2)'()(
)',(),(

, 2
exp)'()(

σ
α

kk
kkkk

ji

ji
WW kk  (A5) 

where  is the horizontal weight factor from presynaptic cells of type k΄ located in 

the j

),(
, )'()(
kk
ji kkW ′

th column to the postsynaptic cells of type k located in the ith column, α is a 

normalization factor, determined numerically, which ensured that the total synaptic input 

integrated over all presynaptic cells of type k΄ to every postsynaptic cell of type k equaled 

, σ is the Gaussian radius of the interaction, and the quantity ),( kkW ′ )'()( kk ji −  denotes 

the horizontal distance between the pre- and post-synaptic cells, taking into account the 

wrap around boundary conditions employed to mitigate edge effects.  An analogous 

weight factor describes the dependence on vertical separation.  Equation A5 was 

augmented by a cutoff condition that prevented synaptic interactions beyond a specified 

distance, determined by the radius of influence of the presynaptic outputs and the 

postsynaptic inputs, roughly corresponding to the axonal and dendritic fields, 

respectively.  A synaptic connection was only possible if the output radius of the 

presynaptic cell overlapped the input radius of the postsynaptic cell.  Except for axonal 

connections, the input and output radii were the same for all cell types.  For the large 

amacrine cells and the ganglion cells, the radius of influence extended out to the centers 

of the nearest neighboring cells of the same type, producing a coverage factor greater 

than one (Vaney, 1990).  The radii of the bipolar, small, and axon-bearing amacrine cells 

(non-axonal connections only) extended only halfway to the nearest cell of the same type, 

giving a coverage factor of one (Cohen and Sterling, 1990).  The external input was 

multiplied by a gain factor of 3.  Values for model parameters are listed in tables 1 and 2.  

A more complete description of the model is presented elsewhere (Kenyon et al., 2003). 
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Table 1: Cellular parameters. 

  τ  b  n×n  d  σ 

BP  10.0  -0.0  64×64  0.25  0.25 

SA  25.0  -0.5  64×64  0.25  0.25 

LA  20.0  -0.25  32×32  1.0  0.5 

PA  5.0  -0.025  64×64  0.25/9.0a 0.25/3.0a 

GC  5.0  -0.025  32×32  1.0  0.5 

Explanation of symbols: τ: time constant (msec); b: bias; n×n: array size; d: cutoff radius, 

σ: Gaussian radius (see eq. 5).  aInner radius/outer radius.   
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Table 2: Synaptic weights. 

 BP  SA  LA  PA   GC 

BP *  -0.375b  -3.0b  -3.0b/-15.0c  * 

SA 3.0b  *  -3.0b   0.0b/-15.0c  * 

LA 3.0b  *  0.25a  -3.0a/-15.0c  * 

PA 0.75b  -0.75b  0.25a  0.25a/-45.0c  0.25a,d 

GC 9.0b  -4.5b  -4.5b  0.25a/-270.0c  * 

Each term represents the total integrated weight from all synapses arising from the 

corresponding presynaptic type (columns) to each cell of the corresponding postsynaptic 

type (rows), (the quantity  in eq. 5).  Asterisk (*) indicates absence of 

corresponding connection.  Synapse type indicated by superscript: 

),( kkW ′

agap junction, bnon-

spiking synapse, cgraded synapse. dMaximum coupling efficiency (ratio of post- to pre-

synaptic depolarization) for this gap junction synapse: DC=11.3%, Action 

Potential=2.7%. 
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Figure Captions 

 

Figure 1.  Schematic of the retinal feedback circuit.  Only those elements directly 

responsible for synchronous oscillations are depicted.  A combination of local excitation 

via gap junctions (resistors) and long-range inhibition via axon-bearing amacrine cells 

(gray dotted lines and filled black circles) produced physiologically realistic size-

dependent oscillations.  The entire model contained a 32×32 array of ganglion cells 

driven by a 64×64 array of bipolar cells, with inhibitory feedback arising from a 64×64 

array of axon-bearing amacrine cells, only a few of which are shown.  Light stimuli were 

implemented by injecting currents directly into bipolar cells.   

 

Figure 2.  Multi-unit auto- and cross-correlograms reveal size-dependent high frequency 

synchronous oscillations.  a) Auto-correlograms were computed from multi-unit spike 

trains recorded from cat retina, with the electrode located at the center of square spots of 

increasing size (data replotted from (Neuenschwander et al., 1999)).  Correlations 

expressed as a fraction of the expected level due to chance.  Bottom Trace: spot size = 

0.7º×0.7º.  Middle Trace: spot size = 6.3º×6.3º.  Top Trace: spot size = 9.8º×9.8º.  

Individual traces are offset for clarity.  (b) Multi-unit cross-correlograms of artificial 

spike trains generated by a rate-modulated Poisson process containing 4 identical units, 

each with a mean firing rate of 50 Hz.  c) Multi-unit cross-correlograms produced by an 

integrate-and-fire feedback circuit consistent with retinal anatomy.  The retinal model 

was stimulated by stationary spots (log2 intensity = -2) covering 1×1, 4×4 and 6×6 

ganglion cells.  Multi-unit spike-trains were recorded from a fixed 2×2 array of ganglion 
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cells located at the center of each spot.  Poisson distributed spikes were added which 

increased the mean firing rate by 20% regardless of spot size, a procedure that resulted in 

a better fit to the physiological data. 

 

Figure 3.  Frequency spectra of natural and artificial multi-unit spike trains as a function 

of spot size.  Same data and general organization as in figure 2.  a) Frequency spectra, 

normalized by the total number of spikes, computed from multi-unit spike trains recorded 

from the cat retina in response to different sized spots.  b) Normalized frequency spectra 

of multi-unit spike trains generated by a rate-modulated Poisson process.  c) Normalized 

frequency spectra of multi-unit spike trains produced by the retinal feedback circuit.  In 

all panels, a prominent peak in the upper gamma band, 65-100 Hz (dotted vertical lines), 

becomes evident as spot size increases.   

 

Figure 4.  Single trial frequency spectra of natural and artificial multi-unit spike trains as 

a function of spot size.  Same data and general organization as in figure 3.  Individual 

trials are drawn as lines with different shading.  Although considerably noisier than their 

trial-averaged counterparts, an increase in spectral amplitudes in the upper gamma band 

is still clearly evident as a function of increasing stimulus size, suggesting that 

synchronous oscillations encode topological information that is available on behaviorally 

relevant time scales. 

 

Figure 5.  Distribution of single-trial gamma-band activity as a function of stimulus size.  

Same data as in figures 2 and 3.  Gamma-band activity, defined as the mean (normalized) 
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Fourier amplitude between 65 and 100 Hz relative to the mean amplitude between 220 

and 500 Hz, was sorted into uniform bins (arbitrary units).  a) Distribution of single-trial 

gamma-band activity recorded from cat retinal ganglion cells.  The distribution of 

gamma-band activity elicited by a small spot (solid line) is largely distinguishable from 

that elicited by both intermediate (dashed line) and large spots (solid line).  b) 

Distributions of gamma-band activity for the rate-modulated Poisson process.  c) 

Analogous distributions for the retinal network.  In both sets of artificially generated 

spike trains, the distributions associated with small vs. intermediate and small vs. large 

spot sizes are clearly distinct. 

 

Figure 6.  Theoretically optimal performance on a size discrimination task.  Same data as 

in figure 5.  A Bayes discriminator was used to categorize relative spot size, as either 

“smaller” or “larger”, based on the single-trial gamma-band activity.  Two pairs of spot 

sizes were employed, either small vs. medium or small vs. large.  The sizes of the small, 

medium and large spots were as indicated in previous figures.  The height of each bar 

gives the maximum percentage of trials that could be classified correctly, assuming both 

sizes were equally likely a priori, based on the distributions shown in figure 5.  All three 

data sets indicate that synchronous oscillations within a small group of ganglion cells are 

capable of supporting reasonable discrimination between small and large spots on 

behaviorally relevant time scales. 

 

Figure 7.  Size-discrimination improves as multi-unit spike train segments become longer 

and/or include more cells.  A Bayes discriminator was used to classify spots as being 
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either “smaller” or “larger” based on the single-trial gamma-band activity.  a) Maximum 

percentage of correctly classified trials plotted as a function of the analysis window size 

for multi-unit spike trains recorded from cat retinal ganglion cells.  Performance levels 

ranged between approximately 70 to 75% as the length of the multi-unit spike train 

segment increased from 50 to 300 msec.  b) Percent of correctly classified trials using 

multi-unit spike trains generated by a rate-modulated Poisson process.  Performance 

improved with longer analysis windows and as more units were included in the spike 

record.  (Explanation of symbols: ○=1, □=4, ◊=9, ×=16 units).  c) Percentage of correctly 

classified trials using multi-unit spike trains generated by the retinal network.  

(Explanation of symbols: ○=1×1, □=2×2, ◊=3×3, ×=4×4 model ganglion cells).  

Performance again improved as the analysis window size and the number of neighboring 

ganglion cells included in the analysis was increased. 

 

Figure 8.  Synchronous oscillations do not support fine discrimination between spot sizes.  

Pairs of stimuli, consisting of two different sized spots, were classified as either “smaller” 

or “larger” based on the single-trial gamma-band activity.  The maximum percent correct, 

estimated via Bayesian discrimination, is plotted for all pairwise combinations.  Each 

point represents a different discrimination task.  The size of the smaller spot is given by 

the x-intercept of the containing curve and the size of the larger spot by the x-coordinate.  

a,c) Rate-modulated Poisson process consisting of a) 4 units and c) 9 units.  Spot sizes 

specified as L-values (see methods) ranging from 1 to 16.  Sizes corresponding to the 

labels “small”, “med” and “large” used in previous figures are indicated separately.  b,d) 

Multi-unit spike trains from the retinal network model consisting of b) 2×2 and d) 3×3 
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neighboring ganglion cells.  Performance on the pairwise size discrimination task was 

poor between spots containing more than 4-9 cells, suggesting that synchronous 

oscillations primarily allow only coarse discriminations between small and large spots. 

 

Figure 9. Binary images produce a sharp transition in gamma-band activity at the 

percolation threshold.  a) Random binary images with varying pixel density, p, indicated 

above each image.  Above the percolation threshold (p ≈ 0.6), connected clusters of 

white pixels span the image.  For clarity, the total number of pixels was reduced in these 

illustrations from 256×256 to 64×64.  b) Trial-averaged multi-unit frequency spectra 

computed from massed spike trains combining all 128×128 model ganglion cells.  Above 

the percolation threshold, a large peak appears in the upper gamma band.  c) Gamma-

band activity (solid black line) exhibits a sharp transition around the percolation 

threshold, consistent with the phase transition in the mean size of connected clusters 

(dotted dark gray line).  Total luminance (dashed light gray line), which grows linearly 

with pixel density, cannot account for the sharp transition in gamma-band activity.   
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